
July, 1999

Ask Advisor

Windows Colors and Fonts

Visual FoxPro 6.0/5.0/3.0

Q: Is there any simple way to modify the text attributes for the message in the
MessageBox() function? If not, is there any similar function I can use that lets me

modify the attributes?

—Sam Chang (via Advisor.Com)

Q: How do I change the background color of a CommandButton? I've heard that it
should follow the Windows environment default. Is that true?

—Donly Wu (via Advisor.Com)

A: I've grouped these two questions together not because both questioners are from

Hong Kong (though they are), but because they raise the same issue about writing
applications in the Windows environment. Both the font used for the MessageBox()

function and the BackColor of buttons are controlled by Windows. More specifically,
they're both settings over which the user has control through the Windows Display

Properties dialog.

An easy way to open that dialog is to right-click on the desktop and choose Properties.
For these particular settings, choose the Appearance page. (It's also available through

the Display item in the Control Panel.) It's easy to see how the user can change the
MessageBox() font. In the Item dropdown, choose Message Box and the various font

items in the dialog are enabled. The user can choose the font, size, color and style (Bold
or Italic) of the message in a message box.

Setting the background color of buttons in this dialog is a little more subtle. That color is
controlled by the 3D Objects settings. The user can set a background color and a

foreground color, which control the colors of all dialogs in Windows. A button is expected
to share its background color with the dialog that contains it. (In fact, the trick used to

give buttons a 3D appearance is based on the form having the same background color
and isn't quite as visually effective when that's not true.)

Of course, VFP does let you change all kinds of other colors without regard for the
Windows settings, so why not these? I don't really have a good answer except to turn

the question around the other way. Why are we allowed to change colors and fonts

without regard for the users' preferences? The answer to that one is that there are
situations where something special is appropriate – for example, to get the user's

attention, a particular item might need to be in an extremely large font.

However, this whole discussion points out that changing BackColor, ForeColor and the

other color properties may cause problems for some users. First, many users set up
their own "appearance schemes" and, in fact, Windows includes a whole collection of

them (as well as so-called Desktop Themes, in some versions) for users to choose. If

your application expects the default Windows colors and makes changes accordingly, it's

going to stand out for those users and not in a good way.

Far more important is that some users have visual problems of one kind or another.

Both colorblindness and visual impairment mean that some users set their machines up
with very specific color and/or font combinations that enable them to work. Setting

custom colors or fonts in your applications is a risky business.

So how can we handle this issue in a way that respects the user, but allows us to

emphasize what we think is important? The answer has two parts. First, wherever
possible, use the Windows settings. By default, new forms created in VFP 5.0 and later

use the Windows 3D settings. This is controlled by the ColorSource property. The default
value is 4-Windows Control Panel (3D Colors). ColorSource also provides the option of

using the Windows Window Colors (5); those are the ones that control documents.
Whenever possible, use one of these two settings and do not directly set any of the color

properties.

If you do need to specify special colors in some situations, your best bet is to find out

what colors the user's machine is currently set for and then set other colors based on

those. In fact, you can choose other user color settings that can be assumed to contrast
well with the color settings. For example, the setting for menu text can be assumed to

contrast with the setting for the menu itself. If the user has failed to make them
contrast, he's likely to notice it in every application he uses, not just yours.

The GetSysColor() API function tells you what the system colors are. To use it, you first
declare it:

DECLARE Integer GetSysColor ;
 IN Win32API ;
 INTEGER nElement

Once you've done that, you can inquire about the color of any individual element. You

pass the number that identifies the elements. Finding out what those numbers are is

actually the hardest part. The documentation for the function (which I found online in
the MSDN library) uses a set of named constants. Here are the constants you're most

likely to be interested in:

#DEFINE COLOR_SCROLLBAR 0
#DEFINE COLOR_BACKGROUND 1
#DEFINE COLOR_ACTIVECAPTION 2
#DEFINE COLOR_INACTIVECAPTION 3
#DEFINE COLOR_MENU 4
#DEFINE COLOR_WINDOW 5
#DEFINE COLOR_WINDOWFRAME 6
#DEFINE COLOR_MENUTEXT 7
#DEFINE COLOR_WINDOWTEXT 8
#DEFINE COLOR_CAPTIONTEXT 9
#DEFINE COLOR_ACTIVEBORDER 10
#DEFINE COLOR_INACTIVEBORDER 11
#DEFINE COLOR_APPWORKSPACE 12
#DEFINE COLOR_HIGHLIGHT 13
#DEFINE COLOR_HIGHLIGHTTEXT 14
#DEFINE COLOR_BTNFACE 15
#DEFINE COLOR_BTNSHADOW 16

#DEFINE COLOR_GRAYTEXT 17
#DEFINE COLOR_BTNTEXT 18
#DEFINE COLOR_INACTIVECAPTIONTEXT 19
#DEFINE COLOR_BTNHIGHLIGHT 20

So, to determine the current background color for buttons, you can call:

nButtonBack = GetSysColor(COLOR_BTNFACE)

To take colors apart into their red, green about blue values, use the RGBComp() function

in the FoxTools library:

SET LIBRARY TO FoxTools ADDITIVE
STORE 0 TO nRed, nGreen, nBlue
RGBComp(nButtonBack, @nRed, @nGreen, @nBlue)

Handling font settings is trickier. Although there are lots of font and size settings (title

bars, menus, message boxes, etc.) available in the Appearance dialog, Windows doesn't
provide a way for users to set the default font and size for either dialogs or documents.

Perhaps that's because the needs of each application are so different. Your best bet here
is to respect the user's settings for message boxes and other interface elements and

allow the user to set fonts and sizes within your application to make it accessible to the
broadest range of users.

Finally, to be sure your application isn't making unreasonable assumptions, it's a good
idea to test it using several different color schemes. In 16-bit Windows, the Hot Dog

Stand scheme was always a good choice for pointing out color problems. That one's

gone in 32-bit Windows, but it's not too hard to create your own unusual scheme. In
Windows 98, try the Baseball theme – it's pretty loud.

-- Tamar

